Sever’s Disease

Sever’s disease is a common cause of heel pain in children between the ages of 9 and 12 years. The pain is due to calcaneal apophysitis occurring due to repetitive and continuous traction on the calcaneus from the Achilles tendon. The apophysis is not part of a joint and has muscle or tendon attachments. This traction apophysitis may lead to stress fractures, pain and tenderness over the heel.

Sever's1.png

Sever’s disease is similar to Osgood-schlatter disease of the tibial tubercle.

Sever's2.png

Patients are usually young athletes presenting with heel pain that increases with activities. Upon examination there could be swelling, tenderness, warmth and/or redness on the back of the heel where the Achilles tendon inserts.

Sever's3.JPG

Plain lateral X-rays may show sclerosis or fragmentation of the calcaneal tuberosity. Sclerosis is not specific for this condition.

Sever's4.png

Fragmentation of the calcaneal tuberosity on the other hand, is more common in patients with Sever’s disease relative to the general population.

Sever's5.png

Remember that Sever’s disease is a clinical diagnosis. X-rays may show other causes of pain such as tumors, fractures, infections or cysts. MRI is not commonly used, but can help rule out calcaneal stress fractures or osteomyelitis.

Sever’s disease is a self-limiting condition that usually resolves with time. Treatment usually consists of NSAID, Achilles tendon stretching exercises, and activity modifications and in severe condition a short leg walking cast can be used.

Carpal Tunnel Syndrome and Diabetes, A Challenging Problem

Approximately 20% of diabetic patients will develop carpal tunnel syndrome. Peripheral neuropathy makes the condition of the carpal tunnel worse. It is suggested that the never that already has established hypoxia caused by diabetes is more vulnerable to local compression. Other mechanisms and explanations are also involved, so it is a difficult diagnosis). Some people believe that patients with diabetic neuropathy will have a high prevalence of carpal tunnel syndrome.

1.png

Electrodiagnostic testing (EMG and nerve studies) cannot distinguish patients with clinical carpal tunnel syndrome from patients with diabetic polyneuropathy. The decision to treat these patients should be made independently of the electrodiagnostic findings. When treating the patient, try to figure out the patient’s blood sugar level. There may be difficulty in determining if the blood sugar is under control.

2.png

HBA1C (the glycosylated hemoglobin test) is an important blood test that shows how well the diabetes is being controlled. The test provides an average blood sugar control over the last 2-3 moths. The normal range of hemoglobin A1c is between 4% and 5.6%. When the level is 6.5% or higher, this indicated diabetes. The goal of treatment is to make sure that the patient with diabetes has hemoglobin A1c less than 7%. The higher the levels of Hemoglobin A1c, the higher the risk of developing complications. People should have the test done every three months to check and see that their blood sugar is under control. At least, the test should be done twice a year.

3.png

The difficulty in carpal tunnel syndrome in diabetic patients is the difficulty of diagnosis, the difficulty in determining if the diabetes is being controlled or not, and if there will be surgery needed, will the patient have complications or not.

Patients who develop complications in orthopedics include: diabetics, obese patients, heavy smokers and patients taking blood thinners.

4.png

If the condition is acute or an emergency, we have to do surgery. If the condition is elective, then surgery can wait. If the patient has poor glycemic control, then you probably don’t want to perform elective surgery on the patient such as carpal tunnel release. Remember, elective surgery can wait.

High blood sugar is linked to increased wound complications after surgery. Hemoglobin A1c is used to monitor the patient’s blood sugar level. The higher preoperative Hemoglobin A1c level, the more there is a risk factor for surgical site infection. Elective surgery can be delayed until HBA1c level becomes normal or better. Joint replacement surgery for example is delayed until HBA1c levels are less than 7%.

Since carpal tunnel syndrome is common in patients with diabetes, we need to take time to sort things out with these conditions. We need to know that the patient has better control of their diabetes. Carpal tunnel syndromes is a small surgery, but it can have catastrophic effect if we do not have a good control of the patient’s diabetes. Hemoglobin A1c will help us monitor the patient. Carpal tunnel surgery can cause complications and infection providing that high levels of HBA1c levels is a true risk factor for infection postoperatively.

5.png

For more information visit my YouTube Channel: Click Here

 

Pediatric Cervical Spine Injuries

Cervical spine injuries are generally not common in children. Blow 8 years of age, cervical spine injuries usually occur in the upper cervical region. Above 8 years of age, cervical spine injuries occur in the lower cervical region. The prevertebral soft tissue shadow may appear widened on lateral x-ray of a crying child with no injury. Cervical spine injuries should be suspected in multiple trauma patients. Rule out cervical injuries in all patients with head or facial trauma.

pedspine1.PNG

Spinal cord injury without radiological abnormality (SCIWORA) is due to ligamentous elasticity and flexibility of the pediatric vertebral column which can withstand injuries without the evidence of deformity, however the spinal cord will be damaged. It should be suspected in a child with neck injury and neurological symptoms with no radiological bony abnormalities. Common in spinal cord injuries below 8 years of age and usually occurs in the cervical or thoracic spine. SCIWORA usually resolves with no neurological deficiencies but there is high risk of reoccurrence. Investigation of choice is MRI and treatment is cervical immobilization.

pedspine2.PNG

pedspine3.PNG

Atlanto-occipital dislocation

It is a fatal injury due to major trauma. It is more common in children than adults due to:

Increased head-body ratio in children.

The occipital condyles of children are smaller than those of adults.

There are three classifications for Atlanto-occipital injuries:

  1. Anterior displacement of the occiput
  2. Longitudinal distraction of the occiput from the atlas ( avoid traction)
  3. Posterior displacement of the occiput.

pedspine4

Diagnosis is by x-ray. CT scan and MRI that shows ligamentous injury.

pedspine5.PNG

Treatment: reduction should be urgently done with early immobilization by halo vest. Avoid traction in type II. Post reduction radiograph should be obtained to ensure adequate reduction. Cervical spine x-ray should be done daily to ensure maintained reduction.  Atlanto-occipital dislocation is a ligamentous injury that is usually unstable and may need atlanto-occipital fusion.

Os odontoid

Os odontoid is due to congenital or unrecognized fracture of the odontoid. It is accidently discovered on radiological investigation. It should be differentiated from acute odontoid fractures.

pedspine6.PNG

Treatment is conservative if no pain, no neurological deficiency and no cervical spine instability. Surgical treatment is done in patients with progressive symptoms as neck pain, neurological deficiency or cervical spine instability. In young children without progressive deficits, it is better to delay surgical treatment until six to seven years of age. By that time the child will have sufficient bony development of the cervical spine.

Odontoid fracture

Odontoid fractures occur in young children usually around 4 years of age. Treatment includes reduction and immobilization in extension. Complete reduction is usually obtained but it is not necessary, 50% reduction is satisfactory. Growth disturbances are rare.

pedspine7.PNG

Persistence of the basilar odontoid synchondrosis is seen in one half of children up to age eleven and may mimic an odontoid fracture. This line appears sclerotic unlike acute fractures and is located well below the base of the odontoid where most adult fractures occur.

Atlanto- Axial rotatory subluxation

Child with rotatory subluxation of C1 on C2 is marked by the direction of head tilt and rotation of the neck.

Atlanto- Axial rotatory subluxation is classified as following:

Type I: unilateral rotatory subluxation with intact transverse ligament.

Type II: unilateral rotatory subluxation with torn transverse ligament

Type III: bilateral rotatory subluxation

Type VI: posterior rotatory subluxation.

pedspine8.PNG

Most common causes of Atlanto-Axial Rotatory Subluxation are:

  • Neck trauma
  • Inflammatory condition as upper respiratory tract infection.
  • Children with congenital anomalies and ligamentous laxity such as Down syndrome.

This injury may be missed due to mild symptoms and signs. The child usually presents with neck pain and torticollis (cock-robin sign). Physician must rule out any neurological deficiencies.

Lateral X-ray shows anterior displacement of C1 over C2. Open mouth view X-ray shows asymmetrical lateral masses of C1. Dynamic CT scan is diagnostic.

pedspine9.PNG

Treatment depends on the duration of injury. For injuries less than 1 week, immobilization by neck collar should be attempted. Halter traction is used in injuries of more than 1 week in duration. Surgical reduction in C1-C2 fusion is used to treat fixed deformities or used in patients with neurological deficits.

pedspine10

Sub-axial injuries are rare in children and usually occur in adults. These include:

Posterior ligamentous disruption

It is due to flexion or distraction injuries. It may be missed on radiological evaluation due to normal loss of cervical lordosis in children. MRI is diagnostic for the ligamentous injury and treatment by immobilization in extension or posterior arthrodesis if signs of instability are present.

Compression fractures

They occur due to flexion and axial loading injuries. It leads to loss of the vertebral height and usually diagnosed on lateral view x-ray. In children under 8 years of age vertebral height will be regained during growth and kyphosis will be corrected but if kyphosis is more than 20 degrees it might not be corrected with growth.

Burst fractures

It is due to axial loading injuries. Treatment is by traction followed by halo immobilization if there is no neurological deficiency. Surgical fusion is done when neurological deficiencies are present. Anterior fusion leads to kyphotic deformity due to suppression of the anterior growth potential.

Unilateral or bilateral facet dislocation

pedspine11

Scoliosis in children

Scoliosis is lateral curving of the spine. Pediatric spinal cord trauma will almost always result in scoliosis.

pedspine12.PNG