Pediatric Cervical Spine Injuries

Cervical spine injuries are generally not common in children. Blow 8 years of age, cervical spine injuries usually occur in the upper cervical region. Above 8 years of age, cervical spine injuries occur in the lower cervical region. The prevertebral soft tissue shadow may appear widened on lateral x-ray of a crying child with no injury. Cervical spine injuries should be suspected in multiple trauma patients. Rule out cervical injuries in all patients with head or facial trauma.

pedspine1.PNG

Spinal cord injury without radiological abnormality (SCIWORA) is due to ligamentous elasticity and flexibility of the pediatric vertebral column which can withstand injuries without the evidence of deformity, however the spinal cord will be damaged. It should be suspected in a child with neck injury and neurological symptoms with no radiological bony abnormalities. Common in spinal cord injuries below 8 years of age and usually occurs in the cervical or thoracic spine. SCIWORA usually resolves with no neurological deficiencies but there is high risk of reoccurrence. Investigation of choice is MRI and treatment is cervical immobilization.

pedspine2.PNG

pedspine3.PNG

Atlanto-occipital dislocation

It is a fatal injury due to major trauma. It is more common in children than adults due to:

Increased head-body ratio in children.

The occipital condyles of children are smaller than those of adults.

There are three classifications for Atlanto-occipital injuries:

  1. Anterior displacement of the occiput
  2. Longitudinal distraction of the occiput from the atlas ( avoid traction)
  3. Posterior displacement of the occiput.

pedspine4

Diagnosis is by x-ray. CT scan and MRI that shows ligamentous injury.

pedspine5.PNG

Treatment: reduction should be urgently done with early immobilization by halo vest. Avoid traction in type II. Post reduction radiograph should be obtained to ensure adequate reduction. Cervical spine x-ray should be done daily to ensure maintained reduction.  Atlanto-occipital dislocation is a ligamentous injury that is usually unstable and may need atlanto-occipital fusion.

Os odontoid

Os odontoid is due to congenital or unrecognized fracture of the odontoid. It is accidently discovered on radiological investigation. It should be differentiated from acute odontoid fractures.

pedspine6.PNG

Treatment is conservative if no pain, no neurological deficiency and no cervical spine instability. Surgical treatment is done in patients with progressive symptoms as neck pain, neurological deficiency or cervical spine instability. In young children without progressive deficits, it is better to delay surgical treatment until six to seven years of age. By that time the child will have sufficient bony development of the cervical spine.

Odontoid fracture

Odontoid fractures occur in young children usually around 4 years of age. Treatment includes reduction and immobilization in extension. Complete reduction is usually obtained but it is not necessary, 50% reduction is satisfactory. Growth disturbances are rare.

pedspine7.PNG

Persistence of the basilar odontoid synchondrosis is seen in one half of children up to age eleven and may mimic an odontoid fracture. This line appears sclerotic unlike acute fractures and is located well below the base of the odontoid where most adult fractures occur.

Atlanto- Axial rotatory subluxation

Child with rotatory subluxation of C1 on C2 is marked by the direction of head tilt and rotation of the neck.

Atlanto- Axial rotatory subluxation is classified as following:

Type I: unilateral rotatory subluxation with intact transverse ligament.

Type II: unilateral rotatory subluxation with torn transverse ligament

Type III: bilateral rotatory subluxation

Type VI: posterior rotatory subluxation.

pedspine8.PNG

Most common causes of Atlanto-Axial Rotatory Subluxation are:

  • Neck trauma
  • Inflammatory condition as upper respiratory tract infection.
  • Children with congenital anomalies and ligamentous laxity such as Down syndrome.

This injury may be missed due to mild symptoms and signs. The child usually presents with neck pain and torticollis (cock-robin sign). Physician must rule out any neurological deficiencies.

Lateral X-ray shows anterior displacement of C1 over C2. Open mouth view X-ray shows asymmetrical lateral masses of C1. Dynamic CT scan is diagnostic.

pedspine9.PNG

Treatment depends on the duration of injury. For injuries less than 1 week, immobilization by neck collar should be attempted. Halter traction is used in injuries of more than 1 week in duration. Surgical reduction in C1-C2 fusion is used to treat fixed deformities or used in patients with neurological deficits.

pedspine10

Sub-axial injuries are rare in children and usually occur in adults. These include:

Posterior ligamentous disruption

It is due to flexion or distraction injuries. It may be missed on radiological evaluation due to normal loss of cervical lordosis in children. MRI is diagnostic for the ligamentous injury and treatment by immobilization in extension or posterior arthrodesis if signs of instability are present.

Compression fractures

They occur due to flexion and axial loading injuries. It leads to loss of the vertebral height and usually diagnosed on lateral view x-ray. In children under 8 years of age vertebral height will be regained during growth and kyphosis will be corrected but if kyphosis is more than 20 degrees it might not be corrected with growth.

Burst fractures

It is due to axial loading injuries. Treatment is by traction followed by halo immobilization if there is no neurological deficiency. Surgical fusion is done when neurological deficiencies are present. Anterior fusion leads to kyphotic deformity due to suppression of the anterior growth potential.

Unilateral or bilateral facet dislocation

pedspine11

Scoliosis in children

Scoliosis is lateral curving of the spine. Pediatric spinal cord trauma will almost always result in scoliosis.

pedspine12.PNG

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s