Pediatric Cervical Spine Injuries

Cervical spine injuries are generally not common in children. Blow 8 years of age, cervical spine injuries usually occur in the upper cervical region. Above 8 years of age, cervical spine injuries occur in the lower cervical region. The prevertebral soft tissue shadow may appear widened on lateral x-ray of a crying child with no injury. Cervical spine injuries should be suspected in multiple trauma patients. Rule out cervical injuries in all patients with head or facial trauma.

pedspine1.PNG

Spinal cord injury without radiological abnormality (SCIWORA) is due to ligamentous elasticity and flexibility of the pediatric vertebral column which can withstand injuries without the evidence of deformity, however the spinal cord will be damaged. It should be suspected in a child with neck injury and neurological symptoms with no radiological bony abnormalities. Common in spinal cord injuries below 8 years of age and usually occurs in the cervical or thoracic spine. SCIWORA usually resolves with no neurological deficiencies but there is high risk of reoccurrence. Investigation of choice is MRI and treatment is cervical immobilization.

pedspine2.PNG

pedspine3.PNG

Atlanto-occipital dislocation

It is a fatal injury due to major trauma. It is more common in children than adults due to:

Increased head-body ratio in children.

The occipital condyles of children are smaller than those of adults.

There are three classifications for Atlanto-occipital injuries:

  1. Anterior displacement of the occiput
  2. Longitudinal distraction of the occiput from the atlas ( avoid traction)
  3. Posterior displacement of the occiput.

pedspine4

Diagnosis is by x-ray. CT scan and MRI that shows ligamentous injury.

pedspine5.PNG

Treatment: reduction should be urgently done with early immobilization by halo vest. Avoid traction in type II. Post reduction radiograph should be obtained to ensure adequate reduction. Cervical spine x-ray should be done daily to ensure maintained reduction.  Atlanto-occipital dislocation is a ligamentous injury that is usually unstable and may need atlanto-occipital fusion.

Os odontoid

Os odontoid is due to congenital or unrecognized fracture of the odontoid. It is accidently discovered on radiological investigation. It should be differentiated from acute odontoid fractures.

pedspine6.PNG

Treatment is conservative if no pain, no neurological deficiency and no cervical spine instability. Surgical treatment is done in patients with progressive symptoms as neck pain, neurological deficiency or cervical spine instability. In young children without progressive deficits, it is better to delay surgical treatment until six to seven years of age. By that time the child will have sufficient bony development of the cervical spine.

Odontoid fracture

Odontoid fractures occur in young children usually around 4 years of age. Treatment includes reduction and immobilization in extension. Complete reduction is usually obtained but it is not necessary, 50% reduction is satisfactory. Growth disturbances are rare.

pedspine7.PNG

Persistence of the basilar odontoid synchondrosis is seen in one half of children up to age eleven and may mimic an odontoid fracture. This line appears sclerotic unlike acute fractures and is located well below the base of the odontoid where most adult fractures occur.

Atlanto- Axial rotatory subluxation

Child with rotatory subluxation of C1 on C2 is marked by the direction of head tilt and rotation of the neck.

Atlanto- Axial rotatory subluxation is classified as following:

Type I: unilateral rotatory subluxation with intact transverse ligament.

Type II: unilateral rotatory subluxation with torn transverse ligament

Type III: bilateral rotatory subluxation

Type VI: posterior rotatory subluxation.

pedspine8.PNG

Most common causes of Atlanto-Axial Rotatory Subluxation are:

  • Neck trauma
  • Inflammatory condition as upper respiratory tract infection.
  • Children with congenital anomalies and ligamentous laxity such as Down syndrome.

This injury may be missed due to mild symptoms and signs. The child usually presents with neck pain and torticollis (cock-robin sign). Physician must rule out any neurological deficiencies.

Lateral X-ray shows anterior displacement of C1 over C2. Open mouth view X-ray shows asymmetrical lateral masses of C1. Dynamic CT scan is diagnostic.

pedspine9.PNG

Treatment depends on the duration of injury. For injuries less than 1 week, immobilization by neck collar should be attempted. Halter traction is used in injuries of more than 1 week in duration. Surgical reduction in C1-C2 fusion is used to treat fixed deformities or used in patients with neurological deficits.

pedspine10

Sub-axial injuries are rare in children and usually occur in adults. These include:

Posterior ligamentous disruption

It is due to flexion or distraction injuries. It may be missed on radiological evaluation due to normal loss of cervical lordosis in children. MRI is diagnostic for the ligamentous injury and treatment by immobilization in extension or posterior arthrodesis if signs of instability are present.

Compression fractures

They occur due to flexion and axial loading injuries. It leads to loss of the vertebral height and usually diagnosed on lateral view x-ray. In children under 8 years of age vertebral height will be regained during growth and kyphosis will be corrected but if kyphosis is more than 20 degrees it might not be corrected with growth.

Burst fractures

It is due to axial loading injuries. Treatment is by traction followed by halo immobilization if there is no neurological deficiency. Surgical fusion is done when neurological deficiencies are present. Anterior fusion leads to kyphotic deformity due to suppression of the anterior growth potential.

Unilateral or bilateral facet dislocation

pedspine11

Scoliosis in children

Scoliosis is lateral curving of the spine. Pediatric spinal cord trauma will almost always result in scoliosis.

pedspine12.PNG

Baker’s Cyst

 

A baker’s cyst is a benign swelling behind the knee. A baker’s cyst is also known as popliteal cyst which lies posterior to the medial femoral epicondyle. The cyst is connected to the knee joint through a valvular opening. Knee effusion from intra-articular pathology allows the fluid to go through the valve to the cyst in one direction. The cyst is located between the semi membranous and medial gastrocnemius muscles. 

baker1.PNG     baker2.png

The patient usually has swelling behind the knee, with pain, fullness and tenderness. A baker’s cyst is easier to see with the knee fully extended. Diagnosis is confirmed by MRI that will show the associated intra-articular pathology. Ultrasound is helpful as well.  These tests are important especially if the cyst is found to be outside of its typical position.

baker3.png    baker4.png

The two most common causes of baker’s cyst are knee arthritis and meniscal tear. Treatment of painful large cysts may include ice, compressions wrap, corticosteroid medication, strengthening exercises and aspiration of the cyst. Recurrence of baker’s cyst is common if the intra-articular pathology continues. The best treatment is arthroscopy and debridement of the intra-articular pathology.

baker5.png

The cyst may burst causing calf pain and swelling. Rule out deep venous thrombosis or thrombophlebitis.

Popliteal cysts in children is a common soft tissue mass at the back of the knee. It occurs more in boys and it is asymptomatic. It is not a tumor. It is treated by observation, no surgery needed. It is not associated with a meniscal tear.

Gait

Gait is the pattern of how a person walks. We will be discussing different gait abnormalities.

Antalgic gait

Antalgic gait is a painful gait. A patient with antalgic gait does not want to spend time on the one leg due to pain. A patient wants to get their weight off the affected extremity. When pain is increased by walking, it leads to an antalgic gait (Figure 1).

gait1.PNG

An antalgic gait can be caused by multiple factors due to pain in any part of the lower extremity. It is usually caused from hip or knee pathology or from severe disc radiation symptoms (Figure 2).

gait2.PNG

The pain can be helped by using a cane on the opposite side of the painful extremity.

Trendelenburg gait

Trendelenburg gait is an abnormal gait that is usually found in people with weak abductor muscle of the hip which is supplied by the superior gluteal nerve. The patient cannot abduct the affected hip due weakness of the abductor muscles on the affected side. If the patient has weakness on one side of the pelvis and when the patient stands on that side, the pelvis on the contralateral side will drop. This is called Trendelenburg sign. A positive Trendelenburg sign occurs when there is dysfunction of the abductor muscles and the body is unable to maintain the center of gravity on the side of the stance leg (Figures 3, 4). The patient will show an excessive lateral lean to keep the center of the gravity over the stance leg.

gait3.PNG

gait4

Weakness can also occur in patients with L5 radiculopathy or avulsion of the abductor muscle tendon (Figure 5) which occurs with increasing frequency after hip replacement surgery.

gait5.PNG

The superior gluteal nerve injury is a major factyor in this gait. With bilateral weakness of the abductor muscles, the patient will have dropping of the pelvis on both sides during walking which leads to a waddling motion. This gait is seen in patients with myopathies.

Slap gait

Slap gait occurs due to weakness of the foot and ankle dorsiflexors which allows the foot slap down on the floor with each step. Slap gait is a heel gait abnormality that can be diagnosed by hearing the patient walk with a normal walking gait, the heel strikes the ground first followed by controlled relaxation of the foot and ankle dorsiflexors in order to allow the forefoot to come in contact with the ground

Steppage gait

Foot drop gait or steppage gait is due to total paralysis of the ankle and foot dorsiflexors (Figure 6). it is sometimes called neuropathic gait. A common symptom of foot drop is a high steppage gait that is often characterized by raising the thigh up in an exaggerated fashion while walking. The patient must externally rotate the leg or flex the hip or knee to raise the foot high enough to avoid dragging the toes along the ground. If the patient has foot drop then they have to have a high steppage gait or else they will trip on the foot and fall forward.

gait6.PNG

Conditions causing foot drop include L4-L5 disc herniation, a herniated disc compressing the L5 nerve root may cause foot drop, lumbosacral plexus injury due to pelvic fracture (Figure 7), hip dislocation leading to injury of the common peroneal nerve (Figure 8) and injury to the knee as knee dislocation (Figure 9).

gait7.PNG

gait8

gait9.PNG

Wide based gait

A wide based gait occurs due to myelopathy and neurological disorders. This gait disturbance is described as clumsy, staggering movements. It can be associated with cervical or thoracic spine pathology. Patient example of myelopathy with significant cervical spine disc compression of the spinal cord can be seen in Figure 10.

gait10.PNG

Patient will have a slow, wide, broad based ataxic gait. The patient will have a wide stance as they try to maintain balance. There will be unsteadiness of the trunk with excessive shift in the center of the gravity.

Gluteus maximus gait

When the gluteus maximus muscle (Figure 11) is week, the trunk lurches backwards (extension of the trunk). It occurs at heel strike on the weakened side to interrupt the forward motion of the trunk. This compensates for weakness of hip extension. The function of the gluteus maximus muscle is external rotation and extension of the hip joint.

gait11.PNG

Hamate Fractures

hamate1.PNG

Fractures of the hamate bone are rare, difficult to diagnose, and routine x-rays may not show the fracture. Hamate fractures are classified as either a hook fracture or as a body fracture.

Hamate hook fractures are usually seen in individuals who participate in sports which involve a racquet, baseball bat, or from swinging a golf club.

Swinging of the golf club may cause a hook fracture of the Hamate bone. Missing the fracture can lead to persistent pain from nonunion.

hamate.PNG

Hamate body fractures are associated with axial force trauma, such as a fist striking a hard object, a fall, or from crushing injuries. It may also be accompanied by 4th and 5th metacarpal subluxation. Coronal fractures are the most common type of Hamate body fractures.

There are three types of coronal fractures; Type A (large piece), Type B (moderate piece) and Type C (avulsion). Make sure to watch out for subluxation of the joint due to pull from the Extensor Carpi Ulnaris.

hamate2.png

Hook fractures of the Hamate are best seen by carpal tunnel or supination x-ray views. For hamate fractures, CT scan is the best study. A 30° pronated view is helpful for body fractures.

Clinical Evaluation

Pain will be present, especially with axial loading of the ring and little finger or by grasping an object. The patient will have dismissed grip strength. They may have ulnar and median nerve neuropathy symptoms. The most common findings are pain and tenderness on the ulnar side of the wrist, distal to the wrist joint.

The pull test has been recently described. This is when the palm of the hand is placed into supination, the wrist is in full ulnar deviation, and the fingers of the patient should be flexed. The examiner pulls on the ulnar two digits with the patient resisting the pull. A positive test with pain in the area of the hook indicates a fractures hook of hamate injury. Pain may also be felt due to compression of the ulnar nerve in the Guyon Canal.

Treatment                        

Early immobilization for acute fractures with short arm splint for 6 weeks will be used to avoid a nonunion. For symptomatic nonunion, excision of the fracture fragment will be needed.

Types A and B require open reduction and internal fixation, in addition to stabilization of the joint if needed. Type C requires closed reduction and percutaneous pinning of the fragment for stabilization of the joint. If a closed reduction of the joint is not adequate, open reduction and stabilization of the joint should be done. A displaced fragment with subluxation requires reduction of the joint and stabilization of the joint with K-wires or fixation of the fragment.

When a 4th or 5th carpometacarpal dislocation occurs, one should make special effort to find a coronal fracture of the hamate.